

Biomass Power: High Efficiency Boiler Technology for Sugar Industry

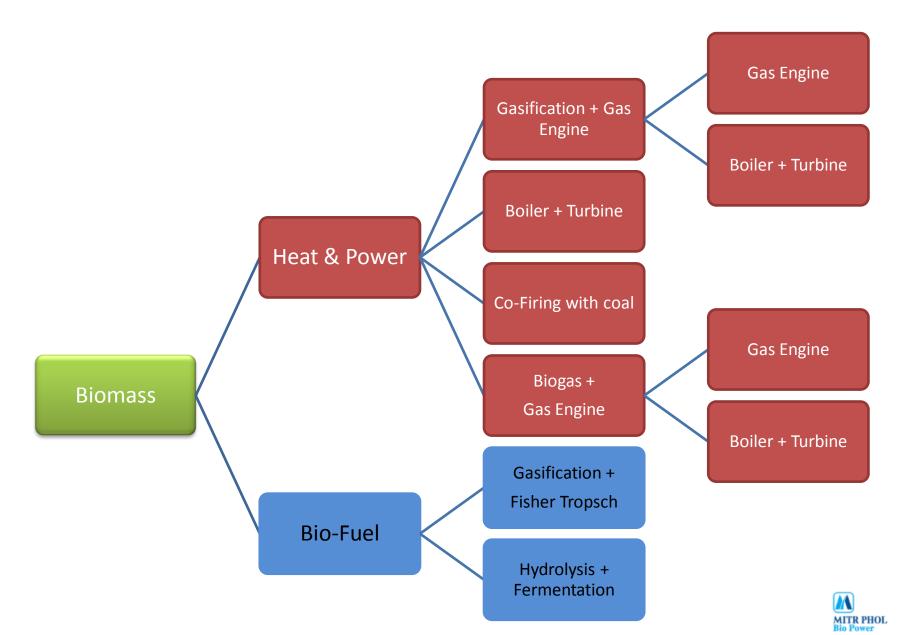
Seminar on Renewable Energy Technology Implementation in Thailand

October 4, 2012

What is Biomass?

Biomass is organic matter which can be converted into energy. Common examples of biomass include crops for energy, crop residues, wood waste and animal manure.

Biomass = Clean Energy Source


MITR PHOI

Carbon Life Cycle for Biomass Power Plant

Electricity from Biomass = Neutral Carbon Emission

Technologies Converting Biomass to Energy

Biomass Boiler Turbine Generator

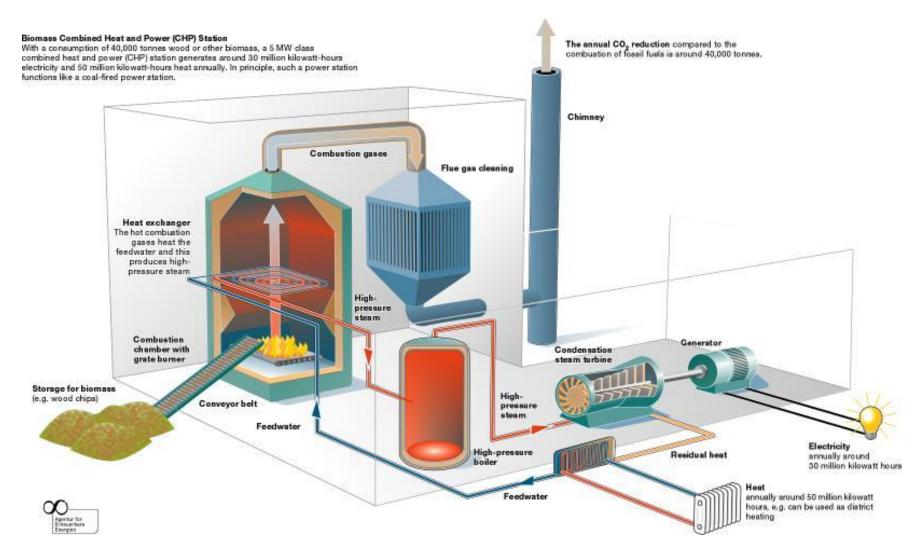


Image source : http://www.unendlich-viel-energie.de/en/electricity/details/article/111/functioning-principles-of-a-biomass-combined-heat-and-power-chp-station.html

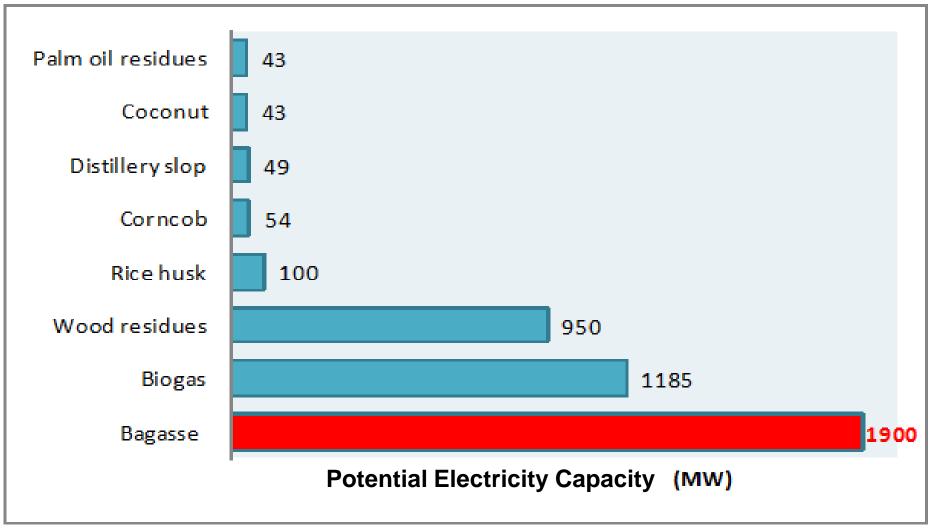
5

MITR PHOL

Mitr Phol Group and Renewable Energy

Sugar: Mitr Phol is the largest sugar producer in Thailand crushing about 18 million tons cane per year from 5 sugar mills.

Bio Power: Bagasse from sugar production is used in biomass power plants with total capacity of 307 MW in which 177 MW is fed to national grid around 1,000 GWH annually.


Bio Fuel: Molasses from sugar production is used to produce ethanol approximately 250 million liters annually.

World's Sugar Cane Production 2011

COUNTRY	AREA HARVESTED	PRODUCTION	YIELD	PRODUCTION	
	(Ha)	RANKING	(tonnes/ha)	(tonnes)	Source
BRAZIL	8,490,000	1	73.03	620,000,000	GAIN Report
INDIA	4,810,000	2	70.80	340,540,000	GAIN Report
CHINA	1,780,000	3	69.66	124,000,000	GAIN Report
THAILAND	1,200,000	4	79.75	95,700,000	GAIN Report
PAKISTAN	1,011,000	6	53.41	54,000,000	GAIN Report
мехісо	675,000	5	67.33	45,450,000	GAIN Report
AUSTRALIA	353,000	8	77.76	27,450,000	GAIN Report
PHILIPPINES	390,000	7	66.41	25,900,000	GAIN Report
USA	359,766	9	64.71	23,281,082	USDA
COLOMBIA*	171,633	10	118.12	20,272,600	FA O Database
CUBA*	431,400	11	26.19	11,300,000	FA O Database

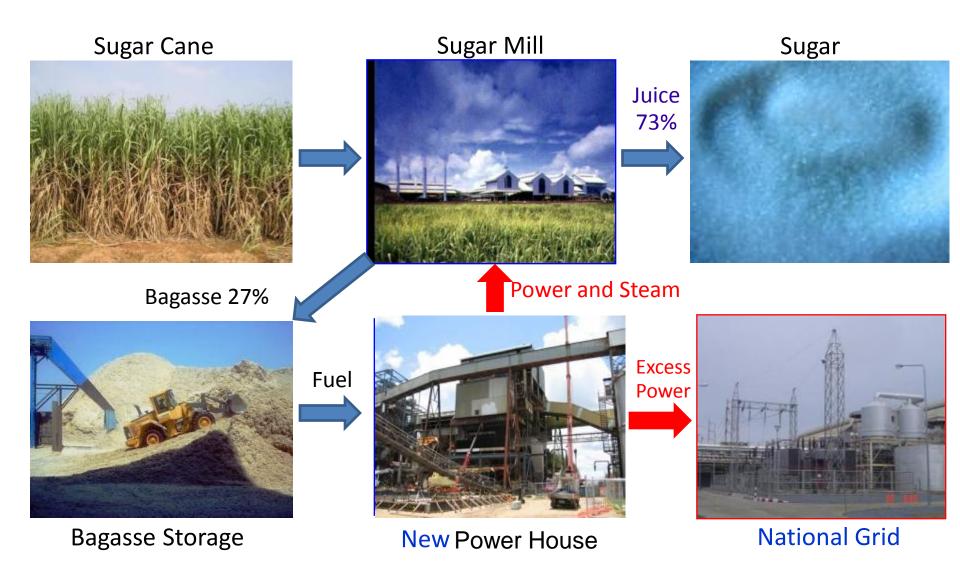
Thailand Biomass-Based Power Generation Potential

Advantages of High Pressure Boiler

90% of sugar mill boilers in Thailand are below this category

				-					
Parameters	Unit	45 Kg/o	m²(a)	66 Kg/c	m² (a)	87 Kg/	cm² (a)	105 Kg/cm² (a)	
		440ºC	515 ⁰C	485 ⁰C	515⁰C	515⁰C	540ºC	/ 540 ⁰C	
Feed Water temp to boiler	OC	10 (witho Heat	ut HP	15 (with Heat	1 HP	(with	70 1 HP ater)	220 (with 2 HP Heater)	
Bagasse Quantity	ТРН	43.51	46.18	41.78	42.89	41.2	42.2	38.6	
Steam /Fuel ratio	-	2.29	2.16	2.39	2.33	2.42	2.36	2.59	
Gross Power output	MW	24.8	28.8	26.5	28.9	28.5	29.4	29.4	
Net Power Output	MW	22	25.2	23.4	25.3	25.1	25.7	25.9	
Specific Steam consumption	Kg/KW-hr	4.03	3.46	3.77	3.46	3.51	3.40	3.40	
Power Generation per ton of Bagasse	KW/Ton	Base	+9.5%	+ 11.4%	+18.3%	+ 21.4%	+ 22.3%	+ 33%	
Heat Rate	Kcals/KW-hr	3983	3640	3579	3370	3281	3258	2980	

(Calculations shown above are based on a 100 TPH Travelling Grate boiler


with 69% efficiency (on GCV 2270 Kcal/Kg Basis) and Turbine exhaust at 0.1 Kg/Cm2 (a)

HIGHER THE CYCLE PARAMETERS- HIGHER THE OUTPUT

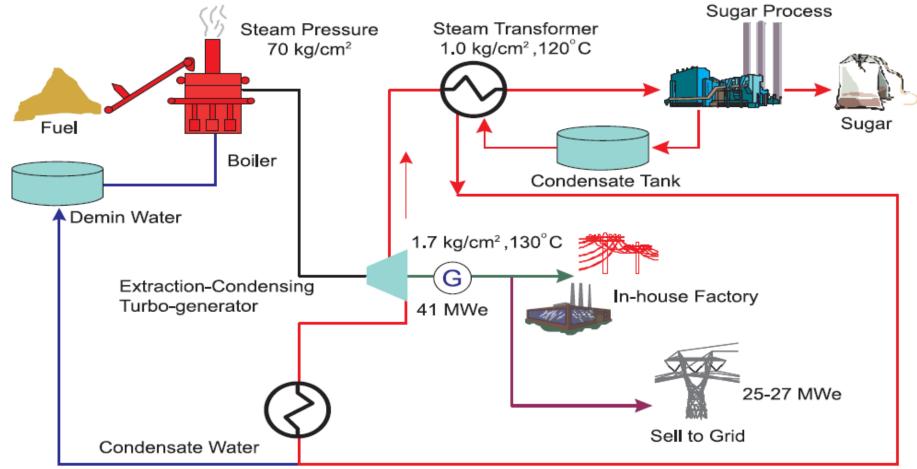
More power output with same input quantity of fuel

Power Cogeneration in Sugar Mills

MITR PHOL 10

Cogeneration by Sugar Mills in Thailand

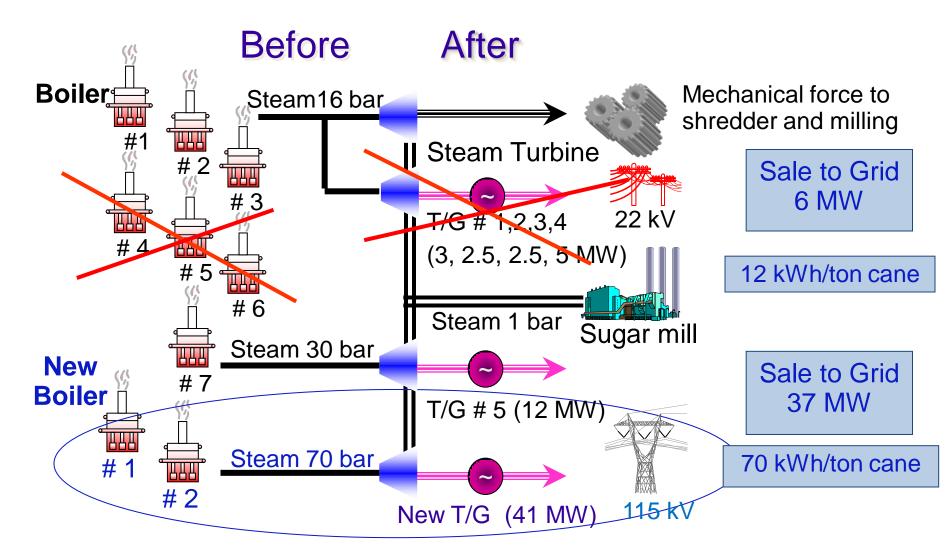
Before	Year	2006
---------------	------	------


After Year 2006

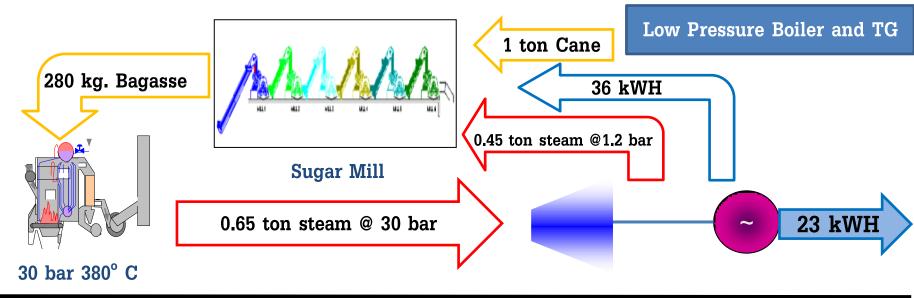
 Mostly low-pressure boilers (< 25 bar) and are very old (> 30 years) 	• Use of medium-pressure boilers and high efficiency turbine
• Mostly within the sugar mill.	• Excess electricity export to the grid.
• Boilers have been designed deliberately with low efficiency.	• Professional approach in project development.
• Purchase of used equipment are common.	• Use of special purpose company

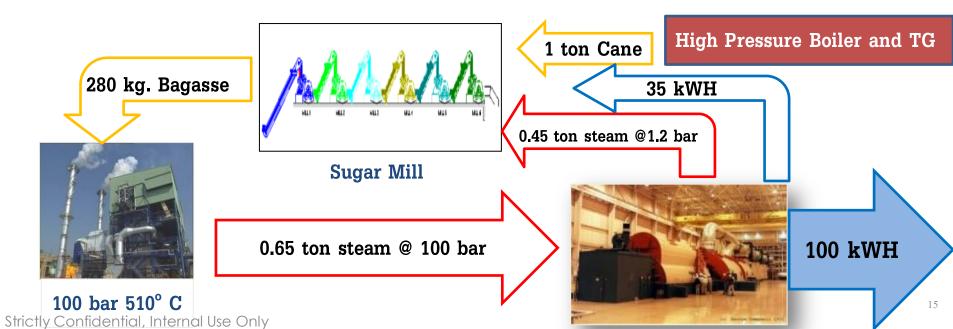
Process Diagram for New Plant

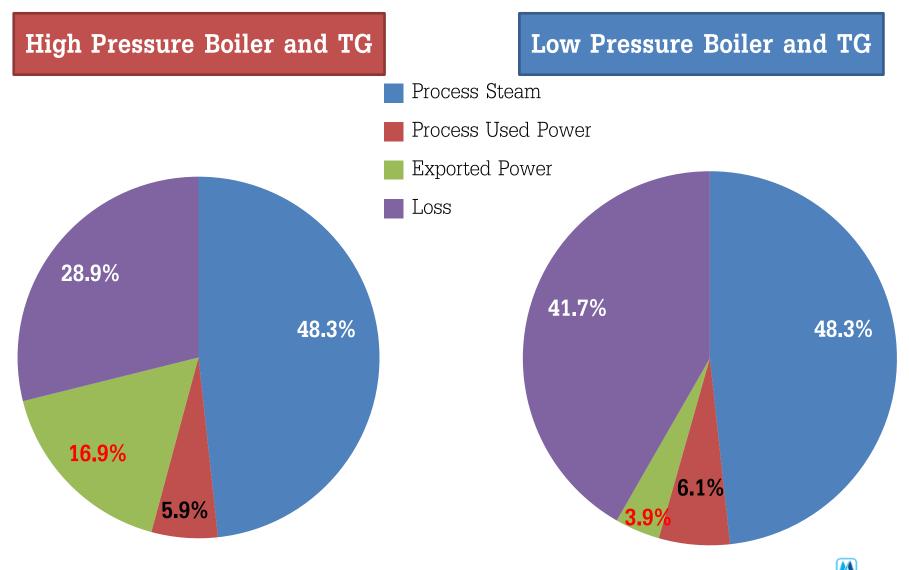
STEAM AND ELECTRICITY SUPPLIED BY HIGH PRESSURE BOILERS AND EXTRACTION - CONDENSING TURBO-GENERATORS



Major Technical Development


Aspects	Previous	Current
Equipment Pressure Level	16-30 bar 380 °C	70-100 bar 520 °C
Boiler Efficiency	< 80%	> 90%
Plant Thermal Efficiency	< 60%	> 70%
Flexibility in load change	low	High
Multi Fuel Firing	no	Yes
Control System	Manual or Semi Auto	Full Computerized
Operators' Skill	Fair	Trained & Skilled
Project Management	Unorganized	Professional


Transformation from Sugar Power House to Biomass Power plant

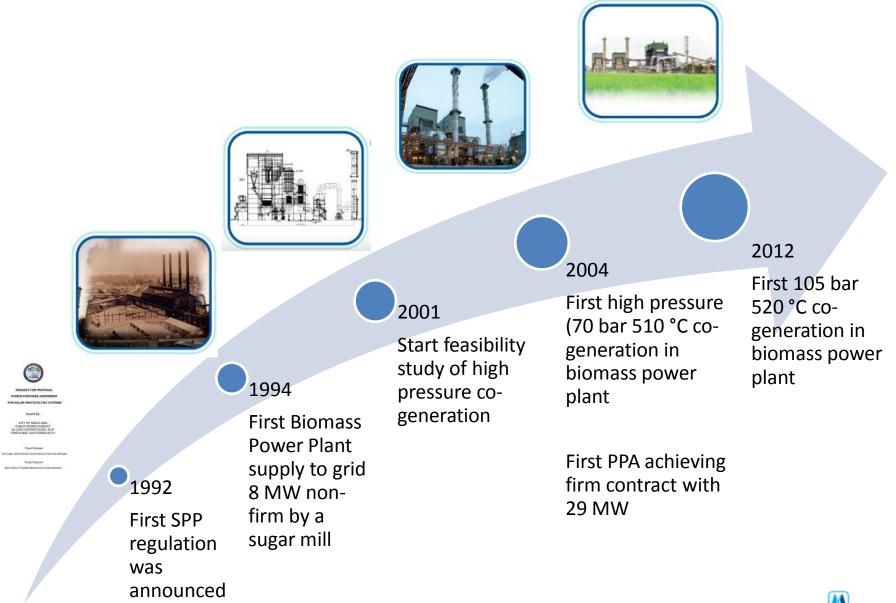


How does a High Pressure System Work?

Energy Balance Comparison

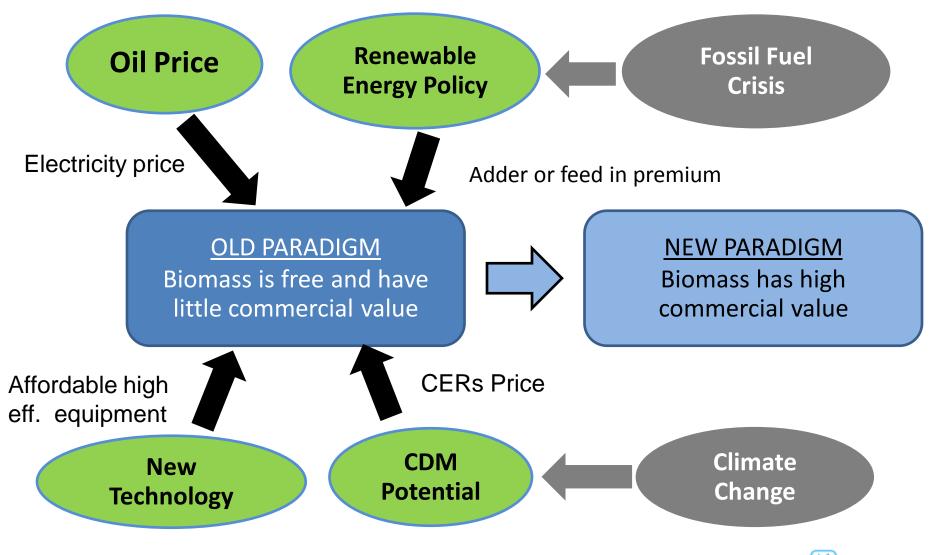
Current Status of Power Co-Generation of Thailand's Sugar Mills

	Number of mills	Installed Capacity, MW	Exported Power, MW	Exported Unit, GWH	Sugar Cane, million ton	Exported Power, kWH/TC
Total	47	1008	397	1626*	95.35	17
With High Pressure	2	105	76	577	7.99	72
With Medium/low Pressure	45	903	321	1049*	87.36	12


* Estimated from these assumptions:

- SPP firm : 330 day running with 95% Plant Factor

- SPP non-firm & VSPP : 150 running day with 80% Plant Factor


- Countercheck with database from EPPO

Development of Bagasse Power Plants in Thailand

MITR PHOL

What led to the change?

Favorable Environmental Impacts

Stack emiss	sion: Cleaner air	(COAL)	
Particulate	20 - 50 ppm	(120)	
• NOx	120 - 160 ppm	(350)	
• SOx	0 - 8 ppm	(320)	

Solid waste: Recycle back to farm

ashes from boiler can be used as soil improvement substance.

Global Warming: Reduce green house gas - Grid emission factor : 500 kg CO₂/ 1 MWH

Socio-Economic Benefits

More jobs have been created

Created value added to many agricultural waste

New technology transfer to the industry

Reduction of the nation's import of fossil fuel for power generation

Challenges

Technical Challenges

Operational Challenges

Management Challenges

Financial Challenges

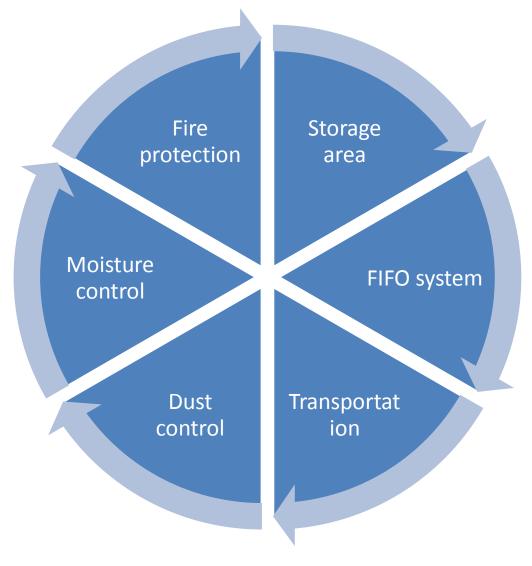
Technical Challenges: Seasoning Operation

	Crushing	Remelting
Steam Consumption, ton/hr	550	160
Power Consumption, MW	18	6
Bagasse Production, ton/day	8700	0
Operation Period, months	4 (Dec-Mar)	8 (Apr-Nov)

What capacity should the biomass power plant be ?

Technical Challenges: Technology Consideration

Basic Design	Type of Boiler	Type of Turbine	Water System
 Firm vs Non-firm Bagasse fuel with or without supplementary fuel 	 Heat recovery system Emission control system: wet scrubber, ESP, bag filter Supplemental fuel : rice husk, cane leaves, wood chips 	 Back pressure + condensing VS extraction condensing Single shaft or dual casing turbine 	 Deminerization: Conventional Resin bed VS Reverse Osmosis Condensate return : Direct mix or separate water circuit



Operational Challenges: Priority - Internal vs. External

Components	Sugar Mills	National Grid
Process type	Batch + Continuous type	Continuous
Main parameter	Steam pressure and flow	Electrical Power
Load characteristics	High load variation	Stable load
Flexibility	High	Low
Maintenance period	Short	Long
Defaults Event	Negotiable	Penalty

Who should have the priority?

Operational Challenges: Fuel Handling System

Operational Challenges: Supplementary Fuels

Rice husk

- High silica content
- High demand :competition with other rice husk users

Cane leaves

- High chloride content
- Difficult to handle : shredding, fire

Wood chips

- High lignin content
- Limit supply :competition with pulp mills

Management Challenges

	Current	New Scheme
Main Concern	Internal production	External customer
Efficiency	Less priority	Major concern
Engineering	In-house	Out-source
Investment	Low	High
People Recruitment Compensations 	Sugar industry	Power plant
Communication	Informal	Formal

Need a new management concept !

