Electricity and the cost of doing business in the Philippines

Philippe Reveilhac
President
Schneider Electric Philippines

2nd European Union-Philippines Meeting on Energy
Energy Efficiency to Boost Economic Growth
29th May 2013
Well Known Fact About Philippines

- Ideal investment destination
- International credit rating upgrade – “BBB-”
- Resilient economy that can weather a global economic downturn
 - GDP in 20124Q grew by 6.8%, full year 6.6%
 - GDP value of PH represents 0.36% of the world’s economy
- Strategic logistics hub to Asia (where more than 2B people resides)
 - Within proximity are demand centers such as China, Indonesia & India
- Abundant resources that provides endless possibilities to invest
 - 5th among mineralized country in the world
 - 2nd in gold reserves, 4th in copper, 5th in nickel & 6th in chromites

• What sets apart? - The Filipinos

References:
- www.boi.gov.ph
- www.manila2012.ph/about_the_philippines
- Bloomberg TV, Worldbank, NSCB, CIA Worldfact Book and PH & WW news releases
In the Philippines

Today:

94M million inhabitants

40% lives in cities

Approx 20% have access to a decent energy infrastructure

By 2030:

125 million inhabitants

60% will live in cities

an additional (approx) 2 million people in the “energy” middle class

Source: UN Population Fund Report 2010
Electrical energy is generally more expensive for those who have less access to it.
Energy Cost

* Philippines is one of the highest rated country in the world!

References:
http://www.abs-cbnnews.com/business/10/10/11/ph-power-rates-5th-highest-world
International Energy Agency - www.iea.org
The Costs of Power Failure
Impact of Energy to Businesses

Estimated figures of loss from the three growth pillars of Mindanao, the agriculture, industry and services sectors:

Table 1. Revenue loss of per hour power shortage.

<table>
<thead>
<tr>
<th>Estimated revenue losses</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than P50,000/hour</td>
<td>83</td>
</tr>
<tr>
<td>P51,000 to P100,000/hour</td>
<td>4</td>
</tr>
<tr>
<td>P101,000 to P200,000/hour</td>
<td>4</td>
</tr>
<tr>
<td>More than P200,000/hour</td>
<td>4</td>
</tr>
<tr>
<td>Not Specified</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Major Effects Brought by the Current Rotational Brown-Outs

<table>
<thead>
<tr>
<th>Major Effects Brought by the Current Rotational Brown-Outs</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Breakdown</td>
<td>23</td>
</tr>
<tr>
<td>Revenue Losses</td>
<td>20</td>
</tr>
<tr>
<td>Delayed Production/Cancellation of Transactions, Operations/</td>
<td>35</td>
</tr>
<tr>
<td>Low Output of Production</td>
<td>12</td>
</tr>
<tr>
<td>Partial Labor Lay-offs</td>
<td>9</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
</tr>
</tbody>
</table>

References:
http://www.minda.gov.ph/site/Mindanao/downloads/Presentations
http://opinion.inquirer.net/50283/mindanao-power-woes-and-media-brownout
Controlling energy risks should not just be limited to having emergency generators!

- Michael Bruch, AGCS Allianz
The Jurassic Grid
Old-style power distribution

- **Central production** adapting to demand variation
- **Top-down** energy flow
- **Production / consumption balance** done by integrated utility companies
- Rather **passive users**
Electricity networks are becoming more complex, less stable!

To continue to efficiently balance supply & demand, the grid needs to become smarter.

3 drivers + 3 accelerators

1. Growing electricity demand
2. Need to reduce CO₂ emissions
3. Constraints on existing networks

1. Technology availability
2. Active government & regulators
3. Active end-users

making the Smart Grid happen
The Smart Grid

Centralised Generation

Transmission

Distribution

Consumers

1. Renewable Energy Plants

2. Active Energy Efficiency: Energy visibility & Means to act

3. Residential, Industry, Buildings, Data Centres, Infrastructure

4. Consumers

Flexible distribution
Renewables integration
Electric vehicle charging
Demand-response

Communication and software at all levels “Smart Grid”

Distributed Generation

Electric Vehicles & Energy Storage
Energy challenges & opportunities are everywhere

Supply Side
More Efficient and Cleaner Supply

Cleaner supplies will take time to implement

We must develop technologies and business models to increase renewable energies penetration

Demand Side
More Efficient Use

Current technologies allow us to target 30% savings

We must focus on Energy Efficiency to solve our energy dilemma

Mid term approach

Short term action
We must enable high performance green buildings & smart cities for our future

Today

- Focus on environmental impact of construction (green design)

Future

- Focus on efficiency and operational performance over time (LEED EB:O&M)
- Use renewable energy
- Net Zero Energy & Positive Energy buildings
- Connect to Electrical Vehicles
- Carbon Neutral buildings, micro grids, eco-cities

smart and green come together to deliver “bright green” buildings
100 units of Fossil Fuel

- Fossil Fuel Power Plant: 38.5 units
- Power Transmission: 35 units
- Building Facilities: 22 units

Lost through inefficient generation and heat loss: 61.5 units
Lost through transmission and distribution: 3.5 units
Wasted through inefficient end use: 13 units
Understanding Building Lifecycle Costs

Building life cycle costs = capital investment + operation costs

- Development CAPEX
 - Construction 11%
 - Financing 14%
 - 3 to 5 years
- Ongoing OPEX
 - Operation and Upgrades 75%
 - 30 to 35 years

Sources:
- www.CABA.org

Real Estate Developers
Investors
Construction Companies
Architects
Engineers
Contractors
Owners
Facility Managers
Occupants

Energy Management minimizes ongoing costs, which is 75% of the life cycle cost of the building.
Active Energy Management: The fastest way to save on energy, curb CO2 emissions and reduce operation cost

1. Find out what the challenge is...
 - Energy audit & metering

2. Fix the basics
 - Low consumption devices, insulation material, power factor correction

3. Optimise through automation & regulation
 - Solutions in: building management, power management, motor control, lighting control

4. Monitor, maintain, improve
 - Metering, monitoring and consulting services, EM analysis software

Passive Energy Efficiency

Active Energy Management
A few examples of REAL $saving$
Case Study 1: Building in France

ISO 50001: first certified building in the world!

A Green building
- Equipped with SE solutions
- Electric Vehicles charging station with PV solar panel roof
- Smart grid-ready
- Full monitoring

÷4
Final energy consumption vs. previous sites in the area

80 kWh/m²/yr
Final energy consumption ROI in 5 to 7 years

Certified
- ISO14001
- HQE Exploitation
- NF EN16001
The Hive: an efficient building

Building certifications
- ISO 50001
- ISO 14001
- HQE operation and use

The Hive at a glance
- 35,000 m² over 6 floors
- 1,850 employees
- 100,000 visitors / year
- 2,424 electric blinds
- 4,510 lighting points
- 3,000 chilled beams
- 1,500 presence detectors
- 186 measurement points

Energy consumption
- 2012, YTD: 2,897,498 kWh
- 2011, full year: 6,304,830 kWh

2011 energy performance
(2005 TR perimeter, in final energy)
- Actual: 78 kWh/m²/year
- Target: 80 kWh/m²/year
Comparison by floor - rolling 12 months

- 6th floor - electricity: 65,278 kWh
- 5th floor - electricity: 53,381 kWh
- 4th floor - electricity: 52,359 kWh
- 3rd floor - electricity: 105,368 kWh
- 2nd floor - electricity: 91,128 kWh
- 1st floor - electricity: 48,495 kWh
The Hive: an efficient building

Performance
-14.6 %*

* Normalized by Degree Days (weather variations)

Trends (2011 vs 2010)
-17.1 %

Energy savings
1,297,141 kWh

CO2 emissions avoided
218 tonnes CO2

Equivalent to...
12,101 trees planted

Equivalent to...
1,281,678 kms not driven
Case Study 2: A Manufacturing Plant in the Philippines
Energy Savings in the Plant
Key Success Factors

• Use Lifecycle Solution for Energy Efficiency Initiatives in the Plant.

• Fast implementation to measure energy using Powerlogic ION Meters

• Regularly recording, monitoring and analysis with Powerlogic ION Enterprise System

• Commitment from each contributor
Step 1
Energy Consumption Monitoring

• The basis of a successful energy efficiency program is to implement an Energy Management System.

• PowerLogic® Power Metering System
 • cover all 6 sites with 84 power meters to survey the electricity consumption
 • Regularly monitoring and analysis PowerLogic data
 • Real time data logging and reporting was made through StruXureware power monitoring
Step 2: Awareness!

Optimized the workload of air compressor and reduce the energy usage

→ to setup new air pressure level.

-8.14% of Kw

The charts show; Air compressors after reduced air pressure, real power significant drop (69Kw. to 64Kw.)

15% Savings Immediately!

Approx P8M savings

Educating employees to switch off lights & air condition when leaving the rooms/offices
Step 3 Lighting Optimization & Control

• Automatic control for switching off unnecessary lights lead to good energy savings.

• Replacement of Metal Halide with High Bay LED Lighting to the warehouse
Step 3 Motor Control

- Variable Speed Drive (VSD) installation at the vacuum pump for the chiller system 10HP
- Variable Speed Drive (VSD) installation at main Air compressor 75HP
Step 4 Energy Monitoring

Monitoring system Improvement (StruXureware)

- Access to the energy readings and logs through the internet
- Issuance of monthly energy reports
- Preparation data for improvement actions
Results: Significant Energy Savings!

Initial Savings:
- P43M worth energy savings
- 3,953,576 kWh savings
Case Study 3: A Factory in the Philippines

Energy Target Setting

Scope of Work:
- Analysis of electricity consumption
- Contract Tariff Analysis
- Transformer load & distribution
- Assessment of Industrial Services
 - Compressed Air Generation
 - Refrigeration Plant
 - Cooling Tower
 - Water Pumping
 - Boiler house & Air heaters
 - HVAC
 - Lighting
- Assessment of Process
- Detailed Project Description with savings calculation and required CAPEX for the EE initiatives.
Energy Efficiency Initiatives: A Factory in Philippines

What was done?

• Replaced Air Handling Unit (AHU) chilled water distribution pumps with VFD and high efficiency pumps
• Replace Valve Absorption Motor (VAM) with electrical chillers
• New Cooling water pumps with VFD and new rerouted headers
• Install new cooling water pumps with VFD and new headers
• Improvement of Power Factor in electrical distribution

More than P45M worth of savings
Above 6000 MWh energy saved
Equivalent of 0.0471 tons of CO₂/t
28,980 trees to offset per year!

As project is still ongoing, more savings are expected!
Case Study 4: A Tunnel in the Philippines
Solar Structure
Projected Savings

- The solar power is rated at 6.4 kWp. It generates 6,648 kWh per year.
- Total power demand reduction is 28,392 kWh (LED + solar power) or 51% energy savings.
- Only the right inverter, PVs, batteries, and lighting systems can provide maximum savings:

<table>
<thead>
<tr>
<th>RESULT</th>
<th>Tubular Fluorescent Lights (T12) + High Pressure Sodium (HPS)</th>
<th>LED + SOLAR POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption, in kW</td>
<td>6.58 kW</td>
<td>4 kW</td>
</tr>
<tr>
<td>Cost, @ Php 10 / kW</td>
<td>Php 570,000 per annum</td>
<td>Php 230,056 per annum</td>
</tr>
<tr>
<td>Power demand reduction</td>
<td>28,392 kWh (51%)</td>
<td></td>
</tr>
</tbody>
</table>
In Conclusion

We cannot stop energy demand growth

But we can change the way we use energy and reduce GHG emissions & eventually realize the savings from energy reduction
30% savings are available today…

... thanks to a combination of

- **Efficient devices and installation (10 to 15%)**
- **Optimized usage via automation (5 to 15%)**
- **Monitoring & Maintenance (2 to 8%)**
… but savings can be lost quickly…

- Unplanned, unmanaged shutdowns of equipment and processes

- Lack of automation and regulation (motors, heating)

- No continuity of behaviours

- Up to 8% per year is lost without monitoring and maintenance program

- Up to 12% per year is lost without regulation and control systems
We make the most of your energy!

Thank you